Problem: f(x,g(x)) -> x f(x,h(y)) -> f(h(x),y) Proof: Complexity Transformation Processor: strict: f(x,g(x)) -> x f(x,h(y)) -> f(h(x),y) weak: Matrix Interpretation Processor: dimension: 1 max_matrix: 1 interpretation: [h](x0) = x0 + 66, [f](x0, x1) = x0 + x1 + 252, [g](x0) = x0 + 8 orientation: f(x,g(x)) = 2x + 260 >= x = x f(x,h(y)) = x + y + 318 >= x + y + 318 = f(h(x),y) problem: strict: f(x,h(y)) -> f(h(x),y) weak: f(x,g(x)) -> x Matrix Interpretation Processor: dimension: 2 max_matrix: [1 1] [0 1] interpretation: [0] [h](x0) = x0 + [1], [1 0] [1 1] [2] [f](x0, x1) = [0 0]x0 + [0 1]x1 + [0], [1] [g](x0) = x0 + [1] orientation: [1 0] [1 1] [3] [1 0] [1 1] [2] f(x,h(y)) = [0 0]x + [0 1]y + [1] >= [0 0]x + [0 1]y + [0] = f(h(x),y) [2 1] [4] f(x,g(x)) = [0 1]x + [1] >= x = x problem: strict: weak: f(x,h(y)) -> f(h(x),y) f(x,g(x)) -> x Qed