Problem:
f(x,g(x)) -> x
f(x,h(y)) -> f(h(x),y)
Proof:
Complexity Transformation Processor:
strict:
f(x,g(x)) -> x
f(x,h(y)) -> f(h(x),y)
weak:
Matrix Interpretation Processor:
dimension: 1
max_matrix:
1
interpretation:
[h](x0) = x0 + 66,
[f](x0, x1) = x0 + x1 + 252,
[g](x0) = x0 + 8
orientation:
f(x,g(x)) = 2x + 260 >= x = x
f(x,h(y)) = x + y + 318 >= x + y + 318 = f(h(x),y)
problem:
strict:
f(x,h(y)) -> f(h(x),y)
weak:
f(x,g(x)) -> x
Matrix Interpretation Processor:
dimension: 2
max_matrix:
[1 1]
[0 1]
interpretation:
[0]
[h](x0) = x0 + [1],
[1 0] [1 1] [2]
[f](x0, x1) = [0 0]x0 + [0 1]x1 + [0],
[1]
[g](x0) = x0 + [1]
orientation:
[1 0] [1 1] [3] [1 0] [1 1] [2]
f(x,h(y)) = [0 0]x + [0 1]y + [1] >= [0 0]x + [0 1]y + [0] = f(h(x),y)
[2 1] [4]
f(x,g(x)) = [0 1]x + [1] >= x = x
problem:
strict:
weak:
f(x,h(y)) -> f(h(x),y)
f(x,g(x)) -> x
Qed